
1

Göran Ehrsson
Technipelago AB

Cut your Grails App to Pieces
Build Feature Plugins

2

Technipelago AB

3

Custom Business Applications

Different industries
Common requirements

• Customers
• Communication (email)
• Documents
• Tasks
• …

4

The challenge

Customer want something simple but it should
rocket fuel their business process

Customer have looked at standard software but
found show stoppers or budget constraints

Developing from scratch each time would be too
expensive or feature limited

One app with VCS branches for each customer
would end up in maintenance hell

Copy code between projects is extremly bad

5

Say no to copy & paste!

⌘-C

⌘-V

⌘-C
⌘-V

6

Grails Plugins

Plugins extend the platform. 
A plugin can:
extend the data model
add services
provide static resources
add command line scripts
…

The Grails platform provides 
lots of extension points

7

Create a plugin

grails create-plugin myplugin
!
cd myplugin
grails run-app

A Grails plugin is a regular Grails project with
a plugin descriptor in the root of the project.

class MypluginGrailsPlugin {
 def version = ”0.1”
}

8

Installing local plugins

grails maven-install

repositories {
 …
 mavenLocal()
}
!
plugins {
 compile ”:myplugin:0.1”
}

theapp/grails-app/conf/BuildConfig.groovy
8

9

-SNAPSHOT versions

Prior to Grails 2.3 local plugins with -SNAPSHOT
versions was not supported due to ivy limitation

Workarounds:

Increment version number before each release

Delete ivy-cache efter each release

Use a remote repository manager (Artifactory)
Grails 2.3+ uses Aether as dependency resolver and

local -SNAPSHOT versions are supported

10

Publish plugins to your own
Repository Manager

You can use a remote repository manager, like
Archiva, Artifactory or Nexus. Host it yourself or
use an external pay-per-use cloud service.

grails.project.repos.mycompany.url =  
 "http://repo.mycompany.com/plugins-releases/"
grails.project.repos.mycompany.username = "admin"
grails.project.repos.mycompany.password = "password"

~/.grails/settings.groovy

grails publish-plugin --repository=mycompany

11

Configure 
remote repositories

repositories {
 …
 mavenRepo ”http://repo.mycompany.com/plugins-snapshots/”
}
!
plugins {
 compile ”:myplugin:1.0-SNAPSHOT”
}

theapp/grails-app/conf/BuildConfig.groovy

12

Inline plugins

grails.project.dependency.resolution = {
 repositories {
 …
 }
 plugins {
 //compile ”:myplugin:0.1”
 }
}
grails.plugin.location.myplugin = ”../../plugins/myplugin”

theapp/grails-app/conf/BuildConfig.groovy

Inline plugins lets you develop plugins as if the
code were part of the application. Auto-reloading
works so you immediately see changes.

13

Plugin Design

Separation of concern
Keep services and related UI

in separate plugins
Avoid intra-plugin

dependencies
Communicate with events
The application is the director

14

Separation of Concern

Each plugin should focus on one task or domain
A plugin should be tested isolated from others
Boundaries are strong and well defined
It forces the developer to stay inside the box

15

Keep services and UI in separate
plugins

Most of the logic are located in the service layer
You may want to have different user interface

plugins for different requirements
The same service plugin can be used in both the

web-front application and in back-office without
exposing admin UI to web-front

You can use the same service plugin in different
micro service style applications

16

Avoid intra-plugin dependencies

UI-plugins are allowed to talk directly to it’s
associated service plugin, but not the opposite

Place common features in one 
or few common plugins.

Other plugins are allowed 
to depend on common plugins

17

Communicate with events

Spring has built-in support for both synchronous
(default) and asynchronous events

Spring Integration includes advanced event support
Apache Camel supports Event Message pattern (EIP)
Grails platform-core plugin includes great event

handling
Synchronous, Asynchronous, Event Reply

The Grails events plugin is a evolution of platform-
core events

18

Application is the director
Individual plugins should not know about other

plugins
The Application route events from one plugin to

another
The Application can access all plugins if needed
The Application is the director that coordinate

events

19

Drawbacks

Debugging events can be hard
How to deal with exceptions
Not easy to follow code paths in IDE

20

DEMO

21

Real software…

22

Real Plugins - Demo Application

23

Real Plugins - Demo Application

24

GR8CRM

crm-contact & crm-contact-lite
crm-content & crm-content-ui
crm-task & crm-task-ui
crm-campaign & crm-campaign-ui
crm-product & crm-product-ui
crm-blog & crm-blog-ui
crm-ui-bootstrap
~40 plugins in total

25

Dynamic Associations

If a domain class in a feature plugin need to
associate with a domain instance in another
plugin, use ”dynamic associations”

”crmContact@42”
The framework will lookup the domain instance

when needed
Lookup Spring bean ”crmContact”
Call crmContact.get(42)

26

Summary

Focus on domain model (not persistent entities)
Decouple business logic from user interface
Publish events asynchronously 

(synchronously if you must)
Let the application be just a container for plugins
Put customer unique code and message routing

rules in the application 
(or in a separate plugin unique for each app)

27

References

http://gr8crm.github.io
https://github.com/goeh
https://github.com/technipelago
(all plugins open sourced under the Apache 2.0 License)

@goeh
goran@technipelago.se
http://www.technipelago.se
https://www.linkedin.com/in/gehrsson

