
Event-driven plugins 
with Grails 3

Göran Ehrsson, Technipelago AB



Göran Ehrsson, @goeh
• Grails enthusiast 

• Founded Technipelago 2006 

• Custom business applications 

• 90% of customer base running 
Grails apps 

• Main contributor to GR8 CRM 
plugin collection



Custom business 
applications (web & mobile)

• Different industries but common requirements 

• Customers 

• Projects 

• Tasks / Calendar 

• Documents 

• …





Grails Plugins
• Plugins extend the platform. A plugin can: 

• extend the data model 

• add services 

• provide static resources 

• add command line scripts 

• do a lot more… 

• The plugin framework provides lots of extension points



Separation of Concern

• Each plugin should focus on one task or domain 

• A plugin should be tested isolated from others 

• Grails plugins make the boundaries strong and 
well defined. 

• They force the developer to stay inside the box



Keep services and UI in 
separate plugins

• Put logic in the service layer, not in view controllers 

• You may want to have different user interface 
plugins for different requirements 

• The same service plugin can be used in both the 
web-front application and in back-office without 
exposing admin UI to web-front 

• You can use the same service plugin in rich client 
or micro service style applications



Communicate with events
• Spring has built-in support for both synchronous 

and asynchronous application events 

• Spring Integration includes advanced event 
support 

• Grails 2 platform-core plugin includes great event 
handling (synchronous, asynchronous, event reply) 

• Grails 3 includes event support based on the 
Reactor library



plugin-grails-events

• Core plugin included in the Grails 3 distribution 

• Based on the Reactor library 

• Not the same as the grails-events plugin by 
@smaldini



Reactor
• Reactor is a foundational library for building reactive fast-

data applications on the JVM. 

• You can use Reactor to power an application that has a 
low tolerance for latency and demands extremely high 
throughput. 

• It’s really fast. On a recent laptop with a dual-core 
processor, it's possible to process over 25,000,000 events 
per second in a single thread. 

• It is an implementation of the Reactive Streams 
Specification.



Reactive Streams
• Reactive Streams is a standard and specification 

for Stream-oriented libraries for the JVM that; 

• process a potentially unbounded number of 
elements in sequence 

• asynchronously passing elements between 
components 

• with mandatory non-blocking backpressure



Grails 3 Events API
• Grails events plugin statically injects Events API methods in Grails 

Controllers and Services using a trait called Events. You can 
implement this trait in other artefacts. 

• Consume events 

• on(key) { /* handle event */ } 

• Publish events 

• notify(key, data) 

• sendAndReceive(key, data) { reply -> /* handle reply */ } 

• def event = eventFor(Map headers, Object data) 

• notify(key, event)



Spring Reactor Support
• @reactor.spring.context.annotation.Consumer 

• @reactor.spring.context.annotation.Selector 

• reactor.spring.context.annotation.SelectorType 

• SelectorType.OBJECT (default) 

• SelectorType.REGEXP 

• SelectorType.URI 

• SelectorType.JSON_PATH



class WebOrderService { 
@Transactional 

    void confirm(Long id) { 
        def orderInstance = WebOrder.get(id) 
        if(orderInstance) { 
            orderInstance.status = OrderStatus.CONFIRMED 
            if(orderInstance.save()) { 
                notify(”order.confirmed”, 

   [order: id, email: orderInstance.customerEmail]) 
                render "Thank you for ordering!" 
            } 
  } 
    } 
}



@Consumer 
class MyApplicationService { 

    @Selector("order.confirmed") 
    void sendConfirmationEmail(Event<Map> event) { 
        Map data = event.getData() 
        String subj = "Order confirmation"         
        String text = parseTemplate("order.template", data) 
        sendMail { 
            to: data.email 
            from: "info@company.com" 
            subject: subj 
            body: text 
        } 
    } 
}



Selecting events based on 
regular expression

@Selector(value = /(.+)\.created/, type = SelectorType.REGEX) 
void somethingWasCreated(Event<Object> event) { 
    println "${event.headers.group1} was just created" 
} 



Event replies
Consumers should return void and use event.reply(data) to 
reply results back to the sender.

def userList(String department) { 
    List result = [] 
    CountDownLatch latch = new CountDownLatch(1) 
    sendAndReceive("user.list", department) { Event reply -> 
        result = reply.data 
        latch.countDown() 
    } 

    latch.await(5, TimeUnit.SECONDS) 

    [list: result] 
}



Transactions
class WebOrderService { 

@Transactional 
    void confirm(Long id) { 
        def orderInstance = WebOrder.get(id) 
        if(orderInstance) { 
            orderInstance.status = OrderStatus.CONFIRMED 
            if(orderInstance.save()) { 
                notify(”order.confirmed”, 

   [order: id, email: orderInstance.customerEmail]) 
                render "Thank you for ordering!" 
            } 
  } 
    } 
}



Transaction bound events

Spring 4.2 (planned release July 2015) will have the 
ability to bind event listeners to a phase of the 
transaction. 

Unfortunately Spring's application events are not 
based on Reactor, so we will still have two different 
event implementations in Grails.



Send event after commit
    @Transactional 
    WebOrder createOrder() { 
        final WebOrder orderInstance = new WebOrder() 
        // populate order items and save. 
        afterCommit { 
            notify(’order.created', orderInstance.id) 
        } 
        return orderInstance 
    } 

    private void afterCommit(final Closure task) { 
        TransactionSynchronizationManager.registerSynchronization( 

new TransactionSynchronizationAdapter() { 
            @Override 
            void afterCommit() { 
                task() 
            } 
        }) 
    }



Migrating  
from Grails 2 to Grails 3

• Based on Spring Boot 

• Gradle is now used to build your 
Grails application 

• Project structure differences 

• File location differences

Grails 3.0 is a complete ground up rewrite of Grails 
and introduces new concepts and components for 
many parts of the framework.

• Configuration differences 

• Package name differences  

• Legacy Gant Scripts 

• Changes to Plugins

See https://grails.github.io/grails-doc/latest/guide/upgrading.html



Migrating plugins
• The plugin descriptor which was previously 

located in the root of the plugin directory should 
be moved to the ”src/main/groovy” directory 
under an appropriate package 

• Same file structure changes as with applications 

• It’s recommended to publish public/official 
plugins to Bintray



migrate2-grails3 plugin
• The migrate2-grails3 plugin performs a partial migration of a 

Grails 2 plugin or app to Grails 3 

• gvm use grails (latest 3.x version) 

• grails create-plugin myplugin 

• gvm use grails (your 2.x plugin/application version) 

• BuildConfig.groovy in the Grails 2.x project: 

• compile ”:migrate2-grails3:<latest version>" 

• grails migrate ../../grails3/myplugin



Migrating from platform-core 
events to Grails 3 (reactor) events

// Publishing events with platform-core 
event(for: "order", topic: ”confirmed", 
data: [order: order.id, email: customerEmail]) 

// Publishing events with Grails 3 
notify(”order.confirmed", 
[order: order.id, email: customerEmail])



Migrating from platform-core 
events to Grails 3 (reactor) events

// Consuming events with platform-core 
class FooService { 
@Listener(namespace = "order", topic = "confirmed") 
def sendConfirmationEmail(data) { ... } 

} 
// Consuming events with Grails 3 
@Consumer 
class FooService { 
@Selector("order.confirmed") 
def sendConfirmationEmail(Event<Map> event) { ... } 

}



Plugin authors

Start your migration engines!



Misc caveats
’pluginExcludes’ does not work the same way in Grails 
3.0.1. But you can add jar excludes in build.gradle 
instead. 

jar { 
  exclude "com/demo/**/**" 
  exclude "demo/**" 
}



Misc caveats
If domain mapping declares 'cache' options you must 
add cache region factory in application.yml. 

static mapping = { 
    cache 'nonstrict-read-write' 
}

hibernate: 
  cache: 
    use_second_level_cache: true 
    provider_class: net.sf.ehcache.hibernate.EhCacheProvider 
    region: 
       factory_class: org.hibernate.cache.ehcache.EhCacheRegionFactory



GR8 CRM
40+ Grails plugins for rapid development of 
customer relationship management applications

crm-contact & crm-contact-ui

crm-content & crm-content-ui

crm-task & crm-task-ui

crm-campaign & crm-campaign-ui

crm-sales & crm-sales-ui

crm-product & crm-product-ui

crm-blog & crm-blog-ui

All GR8 CRM plugins
are open source with

the Apache 2.0 License

gr8crm.github.io



gr8crm.github.io 
github.com/goeh 
github.com/technipelago 
grails.org/plugin/migrate2-grails3 
projectreactor.io

@goeh 
goran@technipelago.se 
www.technipelago.se 
linkedin.com/in/gehrsson


