June 2nd - 4th 2015
Copenhagen, Denmark

Event-driven plugins
with Grails 3

Goran Ehrsson, Technipelago AB

Goran Ehrsson, @goeh

e Gralls enthusiast
 Founded Technipelago 2006
* Custom business applications

 90% of customer base running
Gralils apps

e Main contributor to GR8 CRM
plugin collection

Custom business
applications (web & mobile)

e Different industries but common requirements
e Customers
* Projects
* Jasks / Calendar

e Documents

Gralls Plugins

* Plugins extend the platform. A plugin can:
e extend the data model
e add services
e provide static resources
« add command line scripts

e do a lot more...

_* The plugin framework provides lots of extension points

A\ e —

Separation of Concern

—ach plugin should focus on one task or domain

A plugin should be tested isolated from others

Grails p

well def

ugins make the boundaries strong and
ned.

They force the developer to stay inside the box

Keep services and Ul In
separate plugins
Put logic in the service layer, not in view controllers

You may want to have ditterent user interface
plugins for difterent requirements

The same service plugin can be used in both the
web-front application and in back-office without
exposing admin Ul to web-front

You can use the same service plugin in rich client
or micro service style applications

Communicate with events

e Spring has built-in support for both synchronous
and asynchronous application events

e Spring Integration includes advanced event
support

* Grails 2 platform-core plugin includes great event
handling (synchronous, asynchronous, event reply)

* Grails 3 includes event support based on the
Reactor library

plugin-gralls-events

* Core plugin included in the Grails 3 distribution

 Based on the Reactor library

* Not the same as the gralls-events plugin by
@smaldini

Reactor

Reactor is a foundational library for building reactive fast-
data applications on the JVM.

You can use Reactor to power an application that has a
low tolerance for latency and demands extremely high
throughput.

t's really fast. On a recent laptop with a dual-core
orocessor, it's possible to process over 25,000,000 events
oer second In a single thread.

It Is an iImplementation of the Reactive Streams
Specification.

Reactive Streams

* Reactive Streams is a standard and specitication
for Stream-oriented libraries for the JVM that;

e process a potentially unbounded number of
elements in sequence

e asynchronously passing elements between
components

* with mandatory non-blocking backpressure

Grails 3 Events AP

e Grails events plugin statically injects Events APl methods in Grails
Controllers and Services using a trait called Events. You can
implement this trait in other artefacts.

e Consume events

* on(key) { /* handle event */ }
e Publish events
* notify(key, data)
« sendAndReceive(key, data) { reply -> /* handle reply */ }

o def event = eventFor(Map headers, Object data)

e notify(key, event)

Spring Reactor Support

e @reactor.spring.context.annotation.Consumer
e @reactor.spring.context.annotation.Selector
e reactor.spring.context.annotation.SelectorType
o SelectorType.OBJECT (default)
o SelectorType.REGEXP

o SelectorType.URI

o SelectorType.JSON_PAT

class WebOrderService {
@Transactional
void confirm(Long id) {
def orderlnstance = WebOrder.get(id)
if(orderinstance) {
orderlnstance.status = OrderStatus. CONFIRMED
if(orderlnstance.savel()) {
notity("order.confirmed”,
lorder: id, email: orderlnstance.customerEmail])
render "Thank you for ordering!”

@Consumer
class MyApplicationService {

@Selector("order.confirmed”)
void sendConfirmationEmail(Event<Map> event) {
Map data = event.getData()
String subj = "Order confirmation”
String text = parselemplate(‘order.template’, data)
sendMail {
to: data.emall
from: "info@company.com’
subject: sub]
body: text

Selecting events based on
regular expression

@Selector(value = /(.+)\.created/, type = SelectorType. REGEX)
void somethingWasCreated(Event<Object> event) {
orintln "${event.headers.group1} was just created"

cvent replies

Consumers should return void and use event.reply(data) to
reply results back to the sender.

def userList(String department) {
List result = []
CountDownlLatch latch = new CountDownLatch(1)
sendAndReceive('user.list’, department) { Event reply ->
result = reply.data
latch.countDown()

}

latch.await(5, TimeUnit. SECONDS)

[list: result]

Transactions

class WebOrderService |
@Transactional
void confirm(Long id) {
def orderinstance = WebOrder.get(id)
if(orderinstance) {
orderinstance.status = Orderstatus. CONFIRMED
if(orderinstance.save()) {
notify("order.confirmed’,
lorder: id, email: orderlnstance.customerEmail|)
render "Thank you for ordering!”

Transaction bound events

Sp

api

fra

'ing 4.2 (planned release July 2015) will have the
ity to bind event listeners to a phase of the

nsaction.

Unfortunately Spring's application events are not
based on Reactor, so we will still have two difterent
event implementations in Grails.

Send event after commit

@Transactional
WebOrder createOrder() {
final WebOrder orderlnstance = new WebOrder()
// populate order items and save.
afterCommit {
notify('order.created’, orderinstance.id)

}

return orderinstance

}

private void afterCommit(final Closure task) {
TransactionSynchronizationManager.registerSynchronization(
new TransactionSynchronizationAdapter() {
@Override
void afterCommit() {
task()

Migrating
from Graills 2 to Grails 3

Gralls 3.0 is a complete ground up rewrite of Grails
and introduces new concepts and components for
many parts of the framework.

Based on Spring Boot Configuration differences

Gradle is now used to build your « Package name differences
Gralls application

e Legacy Gant Scripts
Project structure differences

e Changes to Plugins
File location differences

See https://grails.github.io/grails-doc/latest/guide/upgrading.html

Migrating plugins

* The plugin descriptor which was previously

ocated in the root of the plugin directory s
e moved to the "src/main/groovy” directo
under an appropriate package

nould

Yy

e Same file structure changes as with applications

e |t's recommended to publish public/official
olugins to Bintray

migrate2-gralls3 plugin

* The migrate2-grails3 plugin pertorms a partial migration of a
Grails 2 plugin or app to Grails 3

* gvm use grails (latest 3.x version)

* grails create-plugin myplugin

* gvm use grails (your 2.x plugin/application version)

* BuildConfig.groovy in the Grails 2.x project:
* compile ":migrate2-grails3:<latest version>"

.. * grails migrate ../../grails3/myplugin

Migrating from platform-core
events to Grails 3 (reactor) events

// Publishing events with platform-core
event(for: "order”, topic: "confirmed’,
data: [order: order.id, email: customerkEmail])

// Publishing events with Grails 3
notity("order.confirmed”,
[order: order.id, email: customerkEmail])

Migrating from platform-core
events to Grails 3 (reactor) events

// Consuming events with platform-core
class FooService {
@Listener(namespace = "order’, topic = "confirmed")
def sendConfirmationEmail(data) { ... }
}
// Consuming events with Grails 3
@Consumer
class FooService {
@Selector(‘order.confirmed"”)
def sendConfirmationEmail(Event<Map> event) { ... }

Plugin authors

Start your migration engines!

Vlisc caveats

pluginExcludes’ does not work the same way in Grails
3.0.1. But you can add jar excludes In build.gradle
iInstead.

jar {
exclude "com/demo/**/**"
exclude "demo/*™"

Vlisc caveats

It domain mapping declares 'cache’ options you must
add cache region tactory in application.yml.

static mapping = {
cache 'nonstrict-read-write'

}

hibernate:
cache:
use_second_level_cache: true
provider_class: net.sf.ehcache.hibernate.EhCacheProvider
region:
factory_class: org.hibernate.cache.ehcache.EhCacheRegionFactory

G R 8 C R M gr8crm.github.io

40+ Grails plugins for rapid development of
customer relationship management applications

» crm-contact & crm-contact-ui

> crm-content & crm-content-ui All GR8 CRM plugins
are open source with

> crm-task & crm-task-ui the Apache 2.0 License

> crm-campaign & crm-campaign-ui
> crm-sales & crm-sales-ui

> crm-product & crm-product-ui

> crm-blog & crm-blog-ui

gr8crm.github.io
github.com/goeh
githulb.com/technipelago
grails.org/plugin/migrate2-grails3
projectreactor.io

@goeh
goran@technipelago.se
www.technipelago.se
inkedin.com/in/gehrsson

