
CUT YOUR GRAILS
APPLICATION TO PIECES

BUILD FEATURE PLUGINS

Göran Ehrsson
Technipelago AB

@goeh

Göran Ehrsson, @goeh

From Stockholm, Sweden

25+ years as developer

Founded Technipelago AB

Grails enthusiast

Author GR8 CRM plugins

Custom Business
Applications

Different industries

Common requirements

Customers

Projects

Tasks

Documents

Communication

The Challenge
Customer have looked at off-the-shelf software but faced feature
limitations or budget constraints

Customer want something simple but it should be custom made
for their specific business process

Developing from scratch would be too expensive or feature limited

There is a gap to fill between Excel and $100 000 CRM
implementations

Develop one app with VCS branches for each customer would end
up in maintenance hell

Copy code between similar projects is also a bad idea

Grails Plugins
Plugins extend the platform.  
A plugin can:

extend the data model

add services

provide static resources

add command line scripts

do a lot more…

The plugin framework provides  
lots of extension points

Create a plugin
grails create-plugin myplugin

cd myplugin
grails run-app

A Grails plugin is a regular Grails project with a
plugin descriptor in the root of the project.

class MypluginGrailsPlugin {
 def version = ”0.1”
}

Installing local plugins

grails maven-install

repositories {
 …
 mavenLocal()
}

plugins {
 compile ”:myplugin:0.1”
}
theapp/grails-app/conf/BuildConfig.groovy

8

-SNAPSHOT versions
Prior to Grails 2.3 local plugins with -SNAPSHOT
versions was not supported due to ivy limitation

Workarounds:

Increment version number before each release

Delete ivy-cache efter each release

Use a remote repository manager (Artifactory)

Grails 2.3+ uses Aether as dependency resolver and
local -SNAPSHOT versions are supported

Inline plugins

grails.project.dependency.resolution = {
 repositories {
 …
 }
 plugins {
 //compile ”:myplugin:0.1”
 }
}
grails.plugin.location.myplugin = ”../../plugins/myplugin”

theapp/grails-app/conf/BuildConfig.groovy

Inline plugins lets you develop plugins as if the code
were part of the application. Auto-reloading works
so you immediately see changes.

Plugin Design

Separation of Concern
Each plugin should focus on
one task or domain

A plugin should be tested
isolated from others

Plugins make the boundaries
strong and well defined

Plugins force the developer
to stay inside the box

Keep services and UI in
separate plugins

Put logic in the service layer, not in view
controllers
You may want to have different user interface
plugins for different requirements
The same service plugin can be used in both the
web-front application and in back-office without
exposing admin UI to web-front
You can use the same service plugin in rich client
or micro service style applications

Avoid intra-plugin
dependencies

UI-plugins are allowed to talk
directly to its associated
service plugin, but not the
opposite

Place common features in
one or few common plugins.

Other plugins are allowed  
to depend on common
plugins

Communicate with
messages/events

Spring has built-in support for both synchronous and
asynchronous events

Spring Integration includes advanced event support

Apache Camel supports Event Message pattern (EIP)

Grails platform-core plugin includes great event handling
Synchronous, Asynchronous, Event Reply

Grails 3 includes event support based on the Reactor
framework

The application  
is the director

Individual plugins should not know
about other plugins

The application is the director that
coordinate events and route events
from one plugin to another

The application can access all plugins if
needed

Drawbacks

Error handling is harder

Stacktraces

Debugging events can be hard

Not easy to follow code paths in IDE:s

Problems you may face when going event driven:

What about the 
domain model?

DetachedCriteria

Selection plugin

How can a plugin query and fetch data from
another plugin if it can’t have compile time
dependencies?

DetachedCriteria

def criteria = new DetachedCriteria(Person).build {
 eq 'lastName', 'Simpson'
}
def bartCriteria = criteria.build {
 eq 'firstName', 'Bart'
}
// No Hibernate session needed above this point

def results = bartCriteria.list()

Detached Criteria are criteria queries that are not associated
with any given database session/connection. Detached Criteria
queries allow you to create common reusable criteria queries,
execute subqueries and execute batch updates/deletes, etc.

Selection plugin

Queries are expressed as URLs

Queries are Serializable / can be saved
in database or put on a message queue

http://grails.org/plugin/selection

def query = new URI(”bean:personService/list?name=A*”)

@Selectable  
PagedResultList<Person> list(Map query, Map params) {
 Person.createCriteria().list(params) { … }
}

PersonService.groovy

def people = selectionService.select(query, [max: 10])

More selection
examples

// GORM Criteria
gorm://person/list?firstName=Sven&lastName=Anderson

// Spring Bean
bean://myService/method/arg

// External/Proxy Selection
https://dialer.mycompany.com/outbound/next?agent=liza

selection.gorm = true // No restrictions, use with care
selection.gorm.com.mycompany.Person = true // Person domain class only
selection.gorm.com.mycompany = true // All domain classes in package com.mycompany

Security

Soft Associations
If a domain instance in a feature plugin need to associate itself
with a domain instance in another plugin, use ”soft associations”

Stored as a String ”person@42”

Instantiate when needed (put generic code in service)

Lookup the Spring domain bean named ”person”

Call person.get(42)

Find all

Attachment.findAllBySoft(”person@42”)

GR8 CRM

crm-contact & crm-contact-ui

crm-content & crm-content-ui

crm-task & crm-task-ui

crm-campaign & crm-campaign-ui

crm-sales & crm-sales-ui

crm-product & crm-product-ui

crm-blog & crm-blog-ui

40+ Grails plugins for rapid development of
customer relationship management applications

gr8crm.github.io

All GR8 CRM plugins
are open source with

the Apache 2.0 License

DEMO

Grails 3 Plugins
Not backwards compatible

Plugins must be updated

Not as much work as expected

migrate2-grails3 plugin helps

Publish plugins to bintray

Grails 3 Events API
Based on the Reactor Framework

Grails services and controllers implement
the Events trait

on("myEvent1") {
 println "Hello $it!"
}

notify "myEvent1", "Greach"

sendAndReceive "myEvent2", "Greach", {
 println "$it"
}

on("myEvent2") {
 return "Hello $it!"
}

Summary
Focus on domain model (not persistent entities)

Decouple business logic from user interface

Publish events asynchronously 
(synchronously if you must)

Let the application be just a container for plugins

Put customer unique code and event routing rules in the
application (or in a separate plugin unique for each app)

References
gr8crm.github.io

github.com/goeh

github.com/technipelago

grails.org/plugin/
migrate2-grails3

projectreactor.io

@goeh

goran@technipelago.se

www.technipelago.se

linkedin.com/in/gehrsson

